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Abstract
We derive a virial theorem for a disc-shaped ferromagnetic particle with an
axially symmetric magnetic configuration. This is a generalization of Derrick’s
scaling theorem which is now valid in the presence of surfaces. The relation
gives simple results when applied to elementary magnetic states such as a single
domain in an infinitely elongated cylinder. We further calculate the vortex state
and verify numerically that it satisfies the virial relation. The vortex profile has
a simple form in the limit of a very thin particle where also the virial relation
simplifies and effectively gives the vortex core radius. Away from the very
thin limit, the vortex configuration becomes more complicated with a varying
vortex core radius along the thickness of the particle.

PACS numbers: 75.60.Ch, 75.75.+a, 03.50.−z

1. Introduction

The fabrication of mesoscopic ferromagnetic elements (henceforth called magnetic elements
or magnetic particles) with submicron sizes has made possible a large number of experiments
which investigate fundamental as well as technologically important properties of magnetic
materials. The small size of these elements allows for a study elementary processes rather than
averaged quantities usually measured in bulk magnets. The domain structure is an important
magnetic property and there are usually only a few possibilities in small elements. A vortex is
a relatively simple nontrivial magnetic state which is often observed in disc-shaped particles
with no or little anisotropy [1]. In ring-shaped particles, the vortex takes a particularly
simple form [2]. For materials with significant perpendicular anisotropy, a ‘magnetic
bubble’ is the elementary bidomain state and it is observed in particles of appropriate size
[3–5]. It is interesting to note that all the above examples refer to axially symmetric magnetic
configurations.

The existence of sufficiently simple states, such as those mentioned in the previous
paragraph, indicates that there is a possibility for detailed theoretical description of the system,
unlike the usual situation in bulk magnets. While exact solutions can rarely be found even
in simple cases, analytical work can be carried out in some limits, e.g., in the very thin limit
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[6–8], thanks to scaling calculations. The existence of vortices in the same limit has also been
studied [9]. The statics and dynamics of the magnetization is governed by the Landau–Lifshitz
equation (LLE) which includes various magnetic interactions. The magnetostatic interaction
arising from the dipole field of the magnetic moments enters as a nonlocal term in the equation
and is of paramount importance here due to the effect of the surfaces of the magnetic element.

We derive here virial relations which should be satisfied by all static solutions in a
magnetic particle. Our derivation applies to a disc-shaped particle with an axially symmetric
magnetic configuration. Our main result is a Derrick-like relation effectively relying on scaling
arguments. The well-known Derrick scaling theorem [10] applies to an infinite ferromagnet
without boundaries, while the present virial relation is a significant generalization in that we
have included the effect of the surfaces, thus rendering Derrick’s theorem applicable in small
particles.

The virial relation does not give very specific information in the general case; it can,
however, be used as a nontrivial test for solutions that may be found numerically. On the other
hand, specific information can be extracted in limiting cases under certain assumptions. One
such case is a very thin particle limit. We calculate numerically the vortex close to the limit
and verify the virial relation. We also study the vortex in detail as a function of the particle
thickness. We study both its profile and its magnetostatic field.

In section 2, we give the derivation of the virial relations and apply the Derrick-like
relation to an elementary case. In section 3, we find numerically the vortex solution in a
particle and we study the very thin limit. Section 4 contains our conclusions.

2. Virial relations

The energy of a magnetic material can be written as the sum

W = We + Wa + Wm + Wext, (1)

where we have included the exchange, magnetocrystalline anisotropy, magnetostatic and
external field energy, respectively. In rationalized units, these have the form (see e.g. [11, 13])

We =
∫

we dV, we = 1

2
∂im · ∂im,

Wa =
∫

wa dV,

(2)
Wext =

∫
wext dV, wext = −hext · m,

Wm = −1

2

∫
h ·m dV = 1

2

∫
all space

h2 dV,

where we,wa and wext denote the corresponding energy densities. The magnetization vector
m = (m1,m2,m3) is supposed to have a constant magnitude which has been normalized to
unity m2 = 1. The exchange length has been used as the unit of length. The integrations
extend over the particle volume, but the last integration for Wm extends over the entire three-
dimensional space.

The anisotropy energy depends on the material, but usual choices are the expressions

wa = 1
2

(
m2

1 + m2
2

)
and wa = 1

2m2
3, (3)

for easy-axis and easy-plane anisotropy energy densities, respectively. The magnetostatic field
h has been normalized to the saturation magnetization and it satisfies Maxwell’s equations
∇ × h = 0,∇ · b = 0, where b ≡ h + m is the magnetic induction used here mostly as a
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notational abbreviation. The first form of the magnetostatic energy, given in equation (2), is
convenient for calculations and the second form shows explicitly that this is positive definite.
We have also allowed for an external field hext (normalized to the saturation magnetization)
which will be assumed to be a uniform one (and time-independent) throughout this paper.

For a magnetic particle with a surface S, the variational problem for the minimization of
the energy (1) will be supplemented with the ‘unpinned’ boundary conditions [11]:

∂m

∂n
= 0, (4)

that is, the derivative of the magnetization perpendicular to S vanishes.
In the following, we shall explore in detail only axially symmetric magnetic states of the

form

m1 + im2 = [mρ(ρ, z) + imφ(ρ, z)] eiφ, m3 = mz(ρ, z), (5)

where mρ,mφ,mz are the components of m in cylindrical coordinates, supposed to be
functions of ρ and z only. Consequently, the magnetostatic field has no φ-component:

h1 + ih2 = hρ(ρ, z) eiφ, h3 = hz(ρ, z). (6)

Also, the exchange energy has the form

we = 1

2

[(
∂m

∂ρ

)2

+
m2

ρ + m2
φ

ρ2
+

(
∂m

∂z

)2
]

. (7)

In a first step towards obtaining virial relations one should note that, using formal
arguments, it can be shown that static solutions of the equation satisfy the continuity
equation [12]

∂lσkl = 0, (8)

where the indices take three values k, l = 1, 2, 3 for the three space dimensions x1, x2, x3, and
the Einstein summation convention has been adopted. The tensor σkl can be shown to have
the form [12, 13]

σkl = σ e
kl + σa

kl + σ ext
kl + σm

kl , (9)

where

σ e
kl = weδkl − ∂km · ∂lm, σ a

kl = waδkl,

σ ext
kl = wextδkl, σm

kl = hkbl − 1
2b2δkl .

(10)

The form of σ and its elements are given explicitly in the appendix for the case of axial
symmetry (this form has also been used in [13]).

We now consider a disc-shaped particle with radius R and thickness t whose axis of
symmetry is the z-axis in cylindrical coordinates (ρ, φ, z). We denote the top, bottom and
side disc surfaces by

S+ ≡ {z = t/2, ρ � R},
S− ≡ {z = −t/2, ρ � R},
SR ≡ {ρ = R,−t/2 � z � t/2},

(11)

respectively. An interesting relation is obtained when we integrate the continuity equation (8)
over a volume contained in the particle and apply the divergence theorem. We choose a
disc-shaped volume with surfaces

S1 ≡ {z = z1, ρ � R}, S2 ≡ {z = z2, ρ � R}, S ′
R ≡ {z1 � z � z2, ρ = R},
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where z1, z2 are constants with −t/2 � z1 < z2 � t/2. We obtain∫
S2

σk3 dx1 dx2 −
∫

S1

σk3 dx1 dx2 +
∫

S ′
R

σkl dSl = 0, k = 1, 2, 3. (12)

Using (A.1) we find that all three integrals vanish when k = 1, 2. For k = 3 we obtain∫
S2

A2πρ dρ −
∫

S1

A2πρ dρ = −2πR

∫
S ′

R

hzbρ dz,

A ≡ we −
(

∂m

∂z

)2

+ wa + wext − 1

2

(
2hρmρ + h2

ρ − h2
z

)
,

(13)

where the boundary condition (4) has been employed.
Equation (13) has been arranged so that the lhs is the difference in a form of the energy

densities between two slices in the disc particle along its symmetry axis z. It is clear that the
energy density varies along the disc thickness due to the presence of the magnetostatic field.
On the other hand, for h = 0 we would not expect any variation of m with z and (13) would
be trivially satisfied.

Further virial relations can be obtained by taking moments of (8) and integrating:∫
xj∂lσkl dV = 0.

Applying a partial integration and the divergence theorem, we obtain∫
V

σij dV =
∮

S

xjσil dSl, (14)

where S is the boundary of the volume V . When V is the particle volume, we obtain∫
V

σij dV =
∫

S+

xjσi3 dx1 dx2 −
∫

S−
xjσi3 dx1 dx2 +

∫
SR

xjσil dSl. (15)

For an axially symmetric magnetic state of the form (5), equation (15) can conveniently
be written as∫

V

σij dV =
∫

S+

xjσi3ρ dρ dφ −
∫

S−
xjσi3ρ dρ dφ +

∫
SR

xj (σi1 cos φ + σi2 sin φ)R dφ dz.

(16)

We first consider the case i, j = 1, 2. We apply (14) separately in the interior of the particle
and in the space outside the particle thus obtaining two equations. We take into account
that the magnetostatic field (h) component parallel to the particle surface and the magnetic
induction (b) component perpendicular to the particle surface are continuous. Combining the
two relations, we obtain∫

all space
σ11 dV =

∫
all space

σ22 dV = πR2
∫

SR

[
we + wa + wext − h · m − 1

2

(
1 + m2

ρ

)]
dz.

(17)

It is understood that the surface integral over SR has been reduced to a simple integration in
z over the interval [−t/2, t/2]. We then consider i = j = 3 in equation (14) and follow the
same steps as above to obtain∫

all space
σ33 dV = t

2

∫
S+

[
we + wa + wext − h ·m − 1

2

(
m2 + m2

z

)]
2πρ dρ

+
t

2

∫
S−

[
we + wa + wext − h · m − 1

2

(
m2 + m2

z

)]
2πρ dρ. (18)



A virial theorem for vortices in ferromagnetic elements 5673

It is understood that the surface integrals over S± have been reduced to simple integrations of
ρ over the interval [0, R].

We now use equations (9), (10) to obtain

Trσ ≡ σ11 + σ22 + σ33 = we + 3[wa + wext] − 1
2h2 − 2h ·m − 3

2 . (19)

Integrating this over all space and using equations (2), (17), (18), we obtain the Derrick-like
relation

We + 3(Wa + Wext + Wm) = 2πR2
∫

SR

[
we + wa + wext − h · m − 1

2
m2

ρ

]
dz

+
t

2

∫
S+

[
we + wa + wext − h · m − 1

2
m2

z

]
2πρ dρ

+
t

2

∫
S−

[
we + wa + wext − h ·m − 1

2
m2

z

]
2πρ dρ. (20)

The standard Derrick relation [10] applies to an infinite ferromagnet without boundaries
and it is readily obtained from (20) by setting all surface integrals to zero (that is the rhs of
the equation would vanish). In the absence of an external field (hext), the lhs of equation (20)
is manifestly positive definite and thus the standard Derrick relation would exclude any static
nontrivial solutions in a three-dimensional ferromagnet without boundaries. The surfaces are
responsible for rendering this conclusion invalid in a ferromagnetic element as acknowledged
by the generalized Derrick form (20). The latter equation does not exclude nontrivial static
solutions, which may give a positive surface integral on the rhs.

An application of equation (20) to elementary cases might appear straightforward. We
shall study here the case of an infinitely elongated cylinder and an isotropic material (wa = 0).
We consider a disc whose thickness t → ∞ while its radius R remains fixed. We find
numerically that, in this limit, the magnetization as a function of the distance from the surfaces
S± reaches a limit. In the disc centre, away from S±, this is uniform and takes one of the
values m = (0, 0,±1) so that it is parallel to the side surface of the magnetic element in the
bulk of the cylinder. Consequently, all energy terms and the integral over SR in (20) have
finite values as t → ∞ since m approaches the uniform value fast enough, as confirmed by
numerical results. This necessarily implies that the integrals over S± should vanish as 1/t or
faster so that the rhs remains finite in the limit t → ∞. Therefore, we have∫

S±

[
we − h · m − 1

2
m2

z

]
ρ dρ = 0 (for t = ∞), (21)

where the notation S± implies either of the surfaces S+ or S−. We actually find numerically
that the second and third terms on the rhs of equation (20) take nonzero values in the
limit t → ∞.

3. A vortex in a particle

Vortices are among the most prominent examples of magnetic states which have been studied
theoretically for a long time in the context of two-dimensional models. However, related
experiments have been rare. The situation has been reversed in the last decade due to a large
number of experiments in magnetic elements where various vortex states have been observed.
An axially symmetric vortex appears to be among the most important magnetic configurations
most notably in disc- and ring-shaped particles of materials with little or no anisotropy
[1, 2]. Observations of the details of a vortex core in magnetic particles have been reported
in [14, 15].
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We consider here a disc-shaped particle with no anisotropy wa = 0 (also consider
wext = 0). We study an axially symmetric vortex which has the form (5) where
mz(ρ = 0, z) = ±1 while mz(ρ = R, z) ≈ 0. The third component of the magnetization mz

vanishes outside a region which is called the vortex core and this is usually tacitly assumed
to be independent of z. One supposes mρ ≈ 0,mφ ≈ ±1 outside the vortex core so that
there are no surface charges on SR . In fact, this choice means that away from the vortex
core the magnetostatic field vanishes (h = 0). On the other hand, the exchange energy
grows logarithmically with the particle radius R. In conclusion, we have four kinds of axially
symmetric vortices depending on the value of mz in the vortex centre and also on the value
of mφ away from the vortex core. These are related by simple symmetry transformations and
they have the same energy.

We apply the virial relation (13) for a vortex in a particle with radius R much larger than
the vortex core radius. Since h = 0 on SR , equation (13) states that the quantity

∫ R

0

[
we −

(
∂m

∂z

)2

− 1

2

(
2hρmρ + h2

ρ − h2
z

)]
2πρ dρ (22)

is independent of z. The same relation has been derived in [13] for a localized soliton in an
infinite film.

In numerical calculations, we find that the vortex profile satisfies the parity relations

mρ(ρ, z) = −mρ(ρ,−z), mφ(ρ, z) = mφ(ρ,−z), mz(ρ, z) = mz(ρ,−z), (23)

which are compatible with the Landau–Lifshitz equation of motion. Corresponding parity
relations are implied for the magnetostatic field: hρ(ρ, z) = −hρ(ρ,−z), hz(ρ, z) =
hz(ρ,−z). Using the above parity relations and confining ourselves to the case of vanishing
anisotropy and no external field, the virial relation (20) assumes the simpler form

We + 3Wm = 2πR2
∫

SR

[
we − h ·m − 1

2
m2

ρ

]
dz + t

∫
S±

[
we − h ·m − 1

2
m2

z

]
2πρ dρ,

(24)

where S± means that either S+ or S− may be used. In the case of a particle radius R much
larger than the vortex core radius, where h = 0,mρ = mz = 0,mφ = ±1 on SR , we find
we = 1/2R2 on SR provided h and m fall fast enough with ρ. Then equation (24) reduces to

We + 3Wm = tπ + t

∫
S±

[
we − h ·m − 1

2
m2

z

]
2πρ dρ, (25)

which states that bulk properties are reflected on the particle surface S±.
More specific results for the vortex can be derived in the limit of a very thin particle.

The results of [6] (extended to relative minimizers) suggest that, in the limit t → 0, the
magnetization m does not depend on z and hρ = 0, hz = −mz. Employing further the
assumptions mφ = ±1, we = 1/2R2 on SR , equation (24) reduces to∫

m2
z2πρ dρ = π. (26)

The same relation has been derived in the appendix of [16], where the vortex in a two-
dimensional easy-plane magnet (without a magnetostatic field) was studied. The radius of the
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Figure 1. The vortex in a disc-shaped particle with radius R = 19.9 and thickness t = 3.8. We
show the top particle surface but there is little variation of the profile along the particle thickness.
The arrows show the projection of the magnetization vector m on the (x1, x2) plane while the third
component of the magnetization (mz) is represented in grey scale. Black corresponds to maximum
length of mz = −1 and white corresponds to mz = 0 (mz → 1 is also a). The vortex profile may
be fitted (albeit poorly) by (27) with ρ0 = 1.2. In this and following figures, length is measured in
exchange length units.

vortex core can be estimated if we use the model

mρ = 0, mφ = tanh(ρ/ρ0), mz = 1

cosh(ρ/ρ0)
(27)

and substitute in (26) to obtain ρ0 = 0.85.
We now proceed to a numerical calculation of the vortex for varying particle thickness. Our

code [13] solves the Landau–Lifshitz–Gilbert equation in order to find static configurations.
We use finite differences to discretize space in cylindrical coordinates (ρ, z). The
magnetostatic field h is calculated by a combination of the conjugate gradient method and a
direct integration of the Poisson equation. We typically use a lattice spacing �ρ = �z = 0.2
but we also use smaller values for very thin particles. In all the results, the virial relation (20)
is satisfied to an accuracy better than 1%.

We choose a radius R = 19.9 for the particle and find numerically the vortex for a range
of thicknesses. In figure 1, we present the result for a relatively thin particle through the
projection of the magnetization vector on the (x, y) plane while the third component of
the magnetization (mz) is represented in grey scale. mφ,mz present little variation along
the particle thickness (z-axis) and the profile can be fitted by the model (27) with ρ0 = 1.2.
However, mρ does vary along z and it has some significant value (up to mρ ≈ 0.1) near the
surfaces while it vanishes at z = 0, thus signalling a departure from the very thin limit.

Experiments usually measure the magnetostatic field produced by the magnetic particle
rather than the magnetization itself; thus we present in figure 2 the two nonzero components
of h just over the top surface of the particle. The h field has a significant value at the central
region which should be attributed to the magnetization being perpendicular to the top and
bottom surfaces at the vortex core. The magnetostatic field falls to very small values away
from the vortex core which is because the vortex configuration in this region has the form
m = φ̂ and is thus solenoidal (∇ ·m = 0) while it produces no surface charges. In the very
thin limit, the result in [6] means that the magnetostatic field outside the particle vanishes
apparently due to the trivial fact that the total magnetization of the vortex core vanishes for
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ρ
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0.1

hρ

h
z

Figure 2. The magnetostatic field for the vortex of figure 1 just over the top surface of the particle.
We present the two nonzero components hρ, hz as functions of ρ. In this and following figures,
the magnetostatic field is measured in units of the saturation magnetization.

Figure 3. The vortex in a disc-shaped particle with radius R = 19.9 and thickness t = 15.8. The
vortex profile at the left plane (z = 0) is fitted (albeit poorly) by (27) with ρ0 = 3.0. At the right
surface (z = t/2), mρ is nonvanishing and the corresponding vortex core radius is ρ0 = 1.6.

t → 0. This is consistent with our numerical results although we have not attempted to
explicitly verify it numerically.

It is interesting, also for practical purposes, to find how the vortex profile evolves as the
thickness of the particle increases. Thus, we consider a particle with the same radius R = 19.9
as in the previous example but with a larger thickness t = 15.8. In figure 3, we present the
magnetic configuration at the left (t = 0) and right planes (z = t/2) of the particle. The
profile at the bottom surface can be obtained by the parity relations (23). Unlike in very thin
particles, the vortex profile now varies significantly across the particle thickness. The vortex
core radius has increased compared to that of figure 1 and this is significantly larger in the
middle plane than near the top and bottom surfaces. In the top surface (z = t/2), it is clear
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Figure 4. The vortex profile for a particle with radius R = 19.9 and thickness t = 15.8. The lines
correspond to the magnetization components mρ, mφ, mz, as indicated, as functions of the radial
coordinate ρ at the levels z = 0, 1, 2, 3, 4, 5, 6, 7, t/2.
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Figure 5. The magnetostatic field for the vortex of figure 3 just over the top surface of the particle.
We present the two nonzero components hρ, hz as functions of ρ.

that mρ is nonvanishing, unlike in the very thin limit. On the other hand, we find that mρ = 0
in the middle plane (z = 0) as is suggested by (23). We also find that mz has a significant
value for ρ = R near the middle plane (z = 0).

A more detailed view of the vortex profile is given in figure 4. We plot the components
of m as functions of ρ for various values of z along the particle thickness. The variation of
the vortex core radius is probably most apparent in the form of mz which is broader at z = 0.
The graph for mρ shows that this is significant at the vortex core while it falls to zero very
slowly with ρ. We note that the vortex profile remains almost unaltered for radii R > 20 with
mρ ≈ 0,mφ ≈ 1,mz ≈ 0 for all ρ large compared to the vortex core radius.

Figure 5 shows the two nonzero components of h just over the top surface of the particle.
In comparison to figure 2, the magnetostatic field now falls slower due to the larger size of
the vortex core. A remark is in order concerning the magnitude of hz over the centre of the
vortex core (ρ = 0). The magnetostatic field should vanish in the very thin limit, as has been
discussed earlier, essentially due to the vanishing total magnetization. On the other hand, it
appears that hz(ρ = 0) for t = 15.8 in figure 5 is reduced in comparison to the corresponding
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value for t = 3.8 in figure 5. We infer that hz(ρ = 0, z = t/2) should have an extremum, and
we find numerically that this is attained for a thickness close to t = 3.8.

We finally address the limit t → ∞ with R kept fixed, that is, that of an elongated pilar.
We assume that the magnetization profile in the vicinity of the top and bottom surfaces may
be a vortex configuration. Following the discussion at the end of section 2, we assume that m
is almost uniform in the bulk of the pilar in order to minimize the exchange and magnetostatic
energies. Under these assumptions, equation (21) should be satisfied also in the present case.
However, this is a very stringent condition for a vortex state. In order to see this, suppose
that the vortex core radius at the surface S± would be small compared to R. Since the region
outside the vortex core would give we > 0,h = 0,mz = 0 and thus would contribute a
positive quantity to the integral in equation (21), the equation would not be satisfied. We
conclude that, if a vortex exists at all for t → ∞ at fixed R, then the vortex core radius
would have to be comparable to R. Numerical simulations for R = 5 have shown that the
particle cannot sustain a vortex for large thicknesses. The above considerations certainly do
not exclude other solutions which may be similar but probably more complicated than the
vortex considered here.

4. Conclusions

We have been motivated by the very extensive experimental activity on mesoscopic
ferromagnetic particles of the last years to investigate interesting axially symmetric magnetic
configurations such as a vortex. We have derived a relation, (equation (20)) which should be
obeyed by all axially symmetric static solutions in a disc-shaped particle. We have further given
examples of how this rather general relation can be used to give more specific information
in the very thin and very thick particle limits. The most prominent example of an axially
symmetric state is a vortex which has been observed in many experiments. We elaborate
on the vortex solution and solve the Landau–Lifshitz equation numerically to show that the
details of this configuration depend on the particle thickness.

There is currently substantial theoretical interest in the subject of geometrically
constrained ferromagnetic bodies motivated largely by the nontrivial effects of the
magnetostatic field which is a nonlocal interaction ([6–9] and references therein). We hope
that the present results will contribute towards further progress for the study of properties of
magnetic states in this new context.
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Appendix. The elements of σ

We use definitions (9), (10), and equations (5), (6) to find that the elements of the tensor σkl ,
in the case of axially symmetric solutions, have the form (we suppose µ, ν = 1, 2)

σµν = C(0)
µν + C(1)

µν cos(2φ) + C(2)
µν sin(2φ), σµ3 = C

(1)
µ3 cos φ + C

(2)
µ3 sin φ,

σ33 = C
(0)
33 , σ3ν = C

(1)
3ν cos φ + C

(2)
3ν sin φ,

(A.1)
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where the coefficients are functions of ρ and z only, and are given below.

C
(0)
11 = C

(0)
22 = 1

2

(
∂m

∂z

)2

+ wa + wext − 1

2

(
1 + hρmρ + 2hzmz + h2

z

)
,

C
(1)
11 = −C

(1)
22 = C

(2)
12 = C

(2)
21 = −1

2

[(
∂m

∂ρ

)2

− m2
ρ + m2

φ

ρ2

]
+

1

2

(
hρmρ + h2

ρ

)
,

C
(2)
11 = −C

(2)
22 = −C

(1)
12 = −C

(1)
21 = 1

ρ

(
mρ

∂mφ

∂ρ
− mφ

∂mρ

∂ρ

)
− 1

2
hρmφ,

C
(0)
33 = we −

(
∂m

∂z

)2

+ wa + wext − 1

2

(
1 + 2hρmρ + h2

ρ − h2
z

)
,

(A.2)

C
(0)
12 = −C

(0)
21 = 1

2
hρmφ,

C
(1)
13 = C

(2)
23 = −∂m

∂ρ

∂m

∂z
+ hρmz + hρhz,

C
(2)
13 = −C

(1)
23 = 1

ρ

(
mρ

∂mφ

∂z
− mφ

∂mρ

∂z

)
,

C
(1)
31 = C

(2)
32 = −∂m

∂ρ

∂m

∂z
+ hzmρ + hρhz,

C
(2)
31 = −C

(1)
32 = 1

ρ

(
mρ

∂mφ

∂z
− mφ

∂mρ

∂z

)
− hzmφ.
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